3.509 \(\int \sqrt{d \csc (e+f x)} \sin ^2(e+f x) \, dx\)

Optimal. Leaf size=72 \[ \frac{2 \sqrt{\sin (e+f x)} F\left (\left .\frac{1}{2} \left (e+f x-\frac{\pi }{2}\right )\right |2\right ) \sqrt{d \csc (e+f x)}}{3 f}-\frac{2 d \cos (e+f x)}{3 f \sqrt{d \csc (e+f x)}} \]

[Out]

(-2*d*Cos[e + f*x])/(3*f*Sqrt[d*Csc[e + f*x]]) + (2*Sqrt[d*Csc[e + f*x]]*EllipticF[(e - Pi/2 + f*x)/2, 2]*Sqrt
[Sin[e + f*x]])/(3*f)

________________________________________________________________________________________

Rubi [A]  time = 0.0522891, antiderivative size = 72, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {16, 3769, 3771, 2641} \[ \frac{2 \sqrt{\sin (e+f x)} F\left (\left .\frac{1}{2} \left (e+f x-\frac{\pi }{2}\right )\right |2\right ) \sqrt{d \csc (e+f x)}}{3 f}-\frac{2 d \cos (e+f x)}{3 f \sqrt{d \csc (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[d*Csc[e + f*x]]*Sin[e + f*x]^2,x]

[Out]

(-2*d*Cos[e + f*x])/(3*f*Sqrt[d*Csc[e + f*x]]) + (2*Sqrt[d*Csc[e + f*x]]*EllipticF[(e - Pi/2 + f*x)/2, 2]*Sqrt
[Sin[e + f*x]])/(3*f)

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 3769

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1))/(b*d*n), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \sqrt{d \csc (e+f x)} \sin ^2(e+f x) \, dx &=d^2 \int \frac{1}{(d \csc (e+f x))^{3/2}} \, dx\\ &=-\frac{2 d \cos (e+f x)}{3 f \sqrt{d \csc (e+f x)}}+\frac{1}{3} \int \sqrt{d \csc (e+f x)} \, dx\\ &=-\frac{2 d \cos (e+f x)}{3 f \sqrt{d \csc (e+f x)}}+\frac{1}{3} \left (\sqrt{d \csc (e+f x)} \sqrt{\sin (e+f x)}\right ) \int \frac{1}{\sqrt{\sin (e+f x)}} \, dx\\ &=-\frac{2 d \cos (e+f x)}{3 f \sqrt{d \csc (e+f x)}}+\frac{2 \sqrt{d \csc (e+f x)} F\left (\left .\frac{1}{2} \left (e-\frac{\pi }{2}+f x\right )\right |2\right ) \sqrt{\sin (e+f x)}}{3 f}\\ \end{align*}

Mathematica [A]  time = 0.0742789, size = 55, normalized size = 0.76 \[ -\frac{\sqrt{d \csc (e+f x)} \left (\sin (2 (e+f x))+2 \sqrt{\sin (e+f x)} F\left (\left .\frac{1}{4} (-2 e-2 f x+\pi )\right |2\right )\right )}{3 f} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d*Csc[e + f*x]]*Sin[e + f*x]^2,x]

[Out]

-(Sqrt[d*Csc[e + f*x]]*(2*EllipticF[(-2*e + Pi - 2*f*x)/4, 2]*Sqrt[Sin[e + f*x]] + Sin[2*(e + f*x)]))/(3*f)

________________________________________________________________________________________

Maple [C]  time = 0.142, size = 187, normalized size = 2.6 \begin{align*} -{\frac{\sqrt{2}\sin \left ( fx+e \right ) }{3\,f \left ( -1+\cos \left ( fx+e \right ) \right ) }\sqrt{{\frac{d}{\sin \left ( fx+e \right ) }}} \left ( i\sqrt{{\frac{-i \left ( -1+\cos \left ( fx+e \right ) \right ) }{\sin \left ( fx+e \right ) }}}\sin \left ( fx+e \right ) \sqrt{{\frac{i\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) -i}{\sin \left ( fx+e \right ) }}}\sqrt{-{\frac{i\cos \left ( fx+e \right ) -\sin \left ( fx+e \right ) -i}{\sin \left ( fx+e \right ) }}}{\it EllipticF} \left ( \sqrt{{\frac{i\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) -i}{\sin \left ( fx+e \right ) }}},{\frac{\sqrt{2}}{2}} \right ) +\sqrt{2} \left ( \cos \left ( fx+e \right ) \right ) ^{2}-\sqrt{2}\cos \left ( fx+e \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(f*x+e)^2*(d*csc(f*x+e))^(1/2),x)

[Out]

-1/3/f*2^(1/2)*sin(f*x+e)*(d/sin(f*x+e))^(1/2)*(I*(-I*(-1+cos(f*x+e))/sin(f*x+e))^(1/2)*sin(f*x+e)*((I*cos(f*x
+e)+sin(f*x+e)-I)/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-sin(f*x+e)-I)/sin(f*x+e))^(1/2)*EllipticF(((I*cos(f*x+e)+s
in(f*x+e)-I)/sin(f*x+e))^(1/2),1/2*2^(1/2))+2^(1/2)*cos(f*x+e)^2-2^(1/2)*cos(f*x+e))/(-1+cos(f*x+e))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{d \csc \left (f x + e\right )} \sin \left (f x + e\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^2*(d*csc(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(d*csc(f*x + e))*sin(f*x + e)^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-{\left (\cos \left (f x + e\right )^{2} - 1\right )} \sqrt{d \csc \left (f x + e\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^2*(d*csc(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(-(cos(f*x + e)^2 - 1)*sqrt(d*csc(f*x + e)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{d \csc{\left (e + f x \right )}} \sin ^{2}{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)**2*(d*csc(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(d*csc(e + f*x))*sin(e + f*x)**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{d \csc \left (f x + e\right )} \sin \left (f x + e\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^2*(d*csc(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(d*csc(f*x + e))*sin(f*x + e)^2, x)